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1.1.1 Design Philosophy

Design Philosophy

At present, design practice is based on one of three design philosophies:
(1) allowable stress design, (2) load factor design, and (3) load and
resistance factor design (LRFD). This section provides the information
on the development of a reliability based design code such as AASHTO
LRFD specification. The emphasis is placed on the definitions, formulas,
the concept of limit states, statistical load models, and statistical
resistance models needed for the code development. This section
should be helpful to structural designers and should broaden their
perspective by considering reliability based LRFD design as an important
dimension of bridge design. However, a designer still can design bridges
based on the LRFD codes without knowing structural reliability analysis
background as described in this section.

1.1 Allowable Stress Design (ASD):

In ASD, it is ensured that the stresses in a structure under working or
service loads do not exceed designated allowable values. The allowable
values are obtained by dividing the yield stress or ultimate stress of the
material by a factor of safety. The general format for an allowable stress
design is:

R m
Fs.> = &
=1
Where:
R, = nominal resistance of the structural member
expressed in units of stress
Q. = nominal working or service stresses computed under

working loads due to load type i .
F.S. = factor of safety

i = type of load (i.e., dead load, live load, wind load, etc.)
m = number of load types

The left-hand side of Equation (1) represents the allowable stress of the
structural member or component under a given loading condition (e.g.,
tension, compression, bending, or shear). The right-hand side of the
equation represents the combined stress produced by various load
combinations (e.g., dead, live, or wind load). One should realize that in
allowable stress design, the factor of safety is applied only to the
resistance term, and safety is evaluated at the service load. Thus, ASD
is characterized by the use of unfactored “working” loads in conjunction
with a single factor of safety applied to the resistance. Because of the
greater variability and unpredictability of the live load and other loads in
comparison with the dead load, a uniform reliability is not possible with
ASD.
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1.2 Load Factor Design (LFD):
In LFD (with load factors), it is ensured that factored load combinations
do not exceed the maximum required strength of the structure or
component.

It takes the form:

m
Rn 2 z 7iQni (2)
i=1
Where:
R, =nominal required strength of the member (such as plastic

moment strength)
Q, =nominal load effect (e.g., axial force, shear force, bending

moment)

¥i; = load factor (For example: 1.3 for dead load and 2.17 for live
load)

i = type of load (D = dead load, L = live load, W = wind load,
etc.)

m = number of load types

Note that in this method, safety is incorporated only in the load term and
is evaluated at the required limit state. Applying a factor of safety to the
load term is more appropriate than ASD because uncertainty associated
with loads is higher than that associated with resistances. A uniform
reliability cannot be fully achieved with LFD because only factors of
safety (here called load factors) are applied to loads.
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1.3 Load and Resistance Factor Design (LRFD):

In LRFD, it is ensured that the factored load effects do not exceed the
factored nominal resistance of the structural member or component.
There are two safety factors: one applied to the loads, the other to the
resistance. This is a more rational approach because both the loads and
the resistances have different uncertainties. Thus, LRFD takes the form:

m
$R, 2 2 7Qy (3)
i=1
Where:

R, =nominal resistance of the structural member

Q, =nominal load effect (e.g., axial force, shear force, bending
moment)

@ = resistance factor (< 1.0) (e.g., 0.9 for beams, 0.85 for
columns)

7; = load factor (usually > 1.0) corresponding to Q,; (e.g., 1.25D

_ + 1.75 (L+I))

1 = type of load (e.g., D = dead load, L = live load)

m = number of load type

LRFD uses separate factors for each load and can therefore reflect the
degree of uncertainty of different loads and combination of loads. As a
result, more uniform reliability can be achieved. Uniform reliability
means that individual structural members have the same probability of
safety. For bridges, the probability of safety of a member can be
evaluated through reliability analysis. Basically, the reliability analysis
can be achieved by two techniques. The first technique is called
reliability (safety) index approach and the other is called Monte Carlo
Simulation.

In the current LRFD specifications, the resistance factors were
developed mainly through a calibration in order to reach the target safety

index, [, of 3.5

In order to develop load and resistance factors for the new LRFD bridge
codes, the work involved several steps: the development of statistical
load models, statistical resistance model, reliability analysis procedure,
selection of the target reliability index and calibration of the load and
resistance factors for the code. A brief description of the individual steps
are described in Sections 1.1.6 through 1.1.9.

The calibration of the load and resistance factors as described in Section
1.1.9 can not be done without first completing the previous tasks
described in Sections 1.1.6 through 1.1.8. Section 1.1.2 describes the
fundamental probability theory. Section 1.1.3 though 1.1.5 provide very
important background to be used for the development of statistically load
and resistance models and description of reliability analysis procedures.
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1.1.2 Fundamental Probability Theory

2.1 Definitions
Sample Space — considering an experiment such as concrete cylinder
test for measuring concrete ultimate stress, f'c, all the possible outcomes
comprise a sample space. Outcome of each trial is called a realization
or a Sample Functions.

Event — a range of outcomes is defined as an event.

P() — The notation P( ) represents a probability function. If E

represents an event, and (2 represents a sample space, then P(E) =
probability of event E and P(Q) = the probability of an event
corresponding to the entire sample space. Therefore, 0 < P(E) <1 and
P(®2) =1.

Mutually exclusive events — Two or more mutually exclusive events
cannot occur simultaneously. For N mutually exclusive events

E,.E,...Ey,

P£U1 Eij = Zl: P(E;) where F’(U1 Eij represents the probability of

occurrence of E; or E, or...or E,. For example, define 3 mutually
E, ={0< f'c <2000psi};

exclusive events E, = {2000 < f'c < 5000 psi };and
E, = {f'c>5000psi}

The union of these 3 mutually exclusive events is the entire sample

3
space, i.e. U E, ={0<f'c<of

i=1

Random Variables — A random variable is defined as a function that
maps events onto intervals on the axis of real numbers. For example;

1if E,=0< f'c<2000psi
X(f'c)=<2 if E, =2000psi < f'c <5000 psi (1)
3 if E; = f'c >5000 psi

So the random variable X can have three discrete integer values (i.e. 1,
2,and 3). Then X is called a discrete random variable. A random
variable can be a continuous random variable. For example, let
X(f'c) = f'c, then an event f'c =3500 psi corresponds to the

random variable X (f'c) = 3500 psi.
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Probability Mass Function (PMF) Px(y) — Let Py (X) = probability mass
function that a discrete random variable X is equal to a specific value
X. Therefore, py(X) =P (X = X). For example, let X be a discrete

random variable representing concrete strength f'C as defined in

equation (1). Assume the values of the probability mass function Py (X)

as.
P, (1) =0.05
P, (2) =0.85
P, (3)=0.1

Figure 1.1.2.1 shows these three values of the probability mass function
Py (X).

Cumulative distribution Function (CDF) Fx(y) — The total sum of all
probability functions corresponding to values less than or equal to X.

Fy (X) = P(X £ X) as shown in Figure 1.1.2.2. F, (X) is an increasing
function of X.

Py (x)
10 -
110
0.1
0.05
0 | l
1 2 3

Figure 1.1.2.1 Probability Mass Functions
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F(x)

1.0
1.0 ——

09

0.05

Figure 1.1.2.2 Cumulative Distribution Function

Probability Density Function (PDF) fx(y) — fy (X) = Probability functions

in which a continuous random variable X is equal to a specific value X.
In other words a, probability density function is the first derivative of the
cumulative distributions function.

£ (0 = Fy (%) @
dx
Fe) =] f(p)dp ®

Figures 1.1.2.3 (a) and (b) represent typical PDF and CDF, respectively.
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Sy @)

A Area = b

®)

Figure 1.1.2.3: (a) PDF and (b) CDF.

Equation (3) represents the shaded area under PDF as shown in Figure
1.1.2.3 (a) when X = a.
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2.2 Statistic Parameters
The purpose of using the following statistic parameters is to describe the
properties of any random variable.

Mean value of arandom variable X denoted as i :
Hy = I xfy (X)dx for a continuous random variable

= Z X; Py (X;) for a discrete random variable
The above equations for x, requires knowing the PDF of a particular

random variable, X. For a set of test data {Xl, X, X, } the mean u,
can be estimated by

1 n
py =22 % )
nia

Expected value of X denoted by E(X): E(X) = u,
Expected value of X "denoted by E(X"):

E(X") =j_+°°x“ f, (X)dx
E(X")is also called the nth moment of X

Variance of X denoted by o :

2 2 oo 2
o = E(X = y)? = [ (x=p1¢)? F (x)clx
The relationship among the mean, variance and second moment of a
random variable X is

ox =E(X?*)—uy
Standard deviation of X denoted by o :

_ 2
Ox =40x

For a set of test data, {Xl, Xy X, }, the standard deviation can be
estimated by

n

Z(Xi _i)2 Zn:xiz _n(i)2

i=1

ox = SR ] ©
Coefficient of variation denoted by V, :
v, = 2%
Hx
Standard form of X denoted by Z:
7 =2 "Hx
O'x

: =E<Z)=E(x;”XJ= - (E(X) - E(u,)

X
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1
=—(uy —ux) =0
o

X

2
O_ZZZE(ZZ)_/JZZZE[MJ -0

O
1 2 O'>2<
el P2

Therefore the mean of the standard form of a random variable is 0 and
its variance is 1.

Conditional Probability:
Given two events E, and E,, the conditional probability of E, occurring

if E, has already occurred is defined as
P(E,NE,)

P(E,)
The symbol """ is called “intersection” and means that events E, and

P(E,JE, )= (1)

E, occur simultaneously. If two events are statistically independent,

then the occurrence of one event has no effect on the other event, then
equation (1) reduces to

P(E1|E2): P(El) and P(E2|E1): P(Ez )
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2.3 Common Random Variables
Uniform Random Variables:
A uniform random variable has all numbers that are equally likely to
appear. Therefore, the PDF has a constant value for all possible values

of the random variable with a range [a, b].
1

PDF = f,(x)=4P~2
0 otherwise

a<x<b

The mean and variance are
_a+b, , (b-a)

lux 2 JX 12

0 a b

Figure 1.1.2.4: Uniform Random Variable — PDF and CDF

Normal random variables:
The PDF of a normal random variable X is

2
1 1( X—u
f, (X)=———=—exp| —=| ——*
x (X) o 2n p 2( GXJ

The PDF and CDF of a normal random variable are shown in Figure
1.1.2.5.
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Sy

Figure 1.1.2.5 PDF and CDF of a normal random variable.

Standard normal random variable Z :
The PDF of a standard normal random variable Z is

1 1.,
#(2) = EGXD[_E(Z) } = f,(2)

The CDF of the standard normal random variable is typically denoted by

®(z)
The PDF and CDF of a standard normal random variable are shown in
- - X =y
Figure 1.1.2.6. From Section 1.1.2.2, Z =——==-, therefore
O x

X=u, +Zoy
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Ox

Fo ()= P(X <X) = P(u, +Zo, sx):P[z SMJ=P(ZSZ)

or F (X) = F, (2) = @(M) 1)

Oy
Equation (1) means that the standard normal random variable, Z , can
be used to obtained the CDF of an arbitrary normal random variable, X .

¢( 4 ®(A4
1 —

0.5 7

=
by
=

Figure 1.1.2.6 PDF and CDF of a standard normal random variable

Lognormal random variable:
A random variable X is lognormal if
Y =In(X) is a normal random variable.

Fy(X)=P(X<x)=P(nX <Inx)=P(Y <y)=F, (y)

F (X) = F, (y) = q{y_—”YJ where y = In(x);

Oy
ty = Hyyx) = mean value of In(X)

O-Ii(x) = In(Vx2 +1)

1,
Hinixy = 1IN(ey) _Eo'm(X)
If V, is less than 0.2, then
2 2
OIn(x) ~Vy

Hinixy = IN(eey)

The PDF of a lognormal random variable is shown in Figure 1.1.2.7.
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fX(xJ‘

Figure 1.1.2.7 PDF of alognormal random variable.

Random Vector:
A set of random variables is called a random vector. For example

{X,, X,, X;...X . }is a random vector with random variables of

X;y X,,...X . Similar to the CDF and PDF of a random variable, the

CDF and PDF of a random vector are called “joint cumulative distribution
function” and “joint probability density function”, respectively. The joint
cumulative distribution function is defined as

Fa,x (X Xp X)) = POXp <%, X <%0 X <X)
=P(X; <X NnX,<x,Nn..n X, <X,) 1)
The joint probability density function is defined as
o0"F
f (X, X)X ) = ————— (X, X5, X ) 2)
XXXy VL1 A2 n 8X1,X2...Xn 11722 n

For a random vector {X,Y},

2
X

0°F
fu (X, y) = T&yY(X’ y)

and f, ()= [~ f, (x,y)dy

f (0= [ i ()

where f, (X) and f, (y) are called marginal probability density
functions.
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Also, the conditional distribution function for the random vector {X,Y }is

f (XM=% )

If the random variables X and Y are statistically independent as
described in Section 1.1.2.2, equation (3) reduces to

fr (% ¥) =T (O 1, (y) (4)
Covariance of Random Vectors:
The covariance of two random variables X and Y is defined as

COV(X.,Y)= E[(X — Hx )(Y — Hy )]
= [ 17 = )y = ) £ (x, y)lxcly ©)

Coefficient of Correlation:
The coefficient of correlation between two random variables X and Y is
defined as

_ Ccov (X ,Y)

Pxy =— (6)
OxOy

and 1< p,, <1

Pyxy Shows the degrees of “linear” dependence between the two random
variables X and Y. When p,, =0, it means that the random

variables X and Y are not linearly related to each other. However, it
doesn't mean that X and Y are statistically independent because X
and Y may have a nonlinear relationship to each other.

New: June 2001 LRFD_DGO001



LRFD Bridge Design Guidelines

Introduction — Section 1.1 Page: 2.4-1

Fundamental Probability Theory

2.4 Normal Probability Paper
Normal probability paper can be constructed by redefining the vertical
scale of the normal CDF so that the normal CDF will plot as a straight
line. Hence, the values on the vertical axis of a normal probability paper
are not evenly spaced as shown in Figure 1.1.2.8.

Hormal
Fo(x probability
X( ) / scale (p)

1.0
0.841 2
1+ 0841 }------—--—-—-———--—-
1
0.5 : ! :
0.5 3 15 65 8
A4+
24 Iy
Ay
{a) Standard (b)
normal
Wariable (z) ————f——

Figure 1.1.2.8 Construction of normal probability paper. (a) normal
CDF (b) probability paper

In Section 1.1.2.2, the standard form of a normal random variable X is

7 = X :[ L Jx +[—_”X] )
Oy Oy Oy

for any specific value of Z , z,

e
Oy Oy

From Equation (1) in Section 1.1.2.3, the normal CDF can be expressed
as

F () =p= GD(MJ @)

O x

Inversely, Equation (3) leads to
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(D—l(p):X_luX :( 1 JX_(IUXJ (4)
O'x Oy Oy

z=07"(p) :(Ui)x—[g—xj (5)

By using Z as the vertical axis in Figure 1.1.2.8 (b), it can be seen that
the values on this scale are evenly spaced. The following formula can
be used for evaluate 7 :

C, +Ct+C,t?
1+d,t+d,t? +d,t°

z=0"(p)=-t+ for p<0.5

where

C, = 2.515517; ¢, =0.802853; c, =0.010328,
d, =1.432788; d, =0.189269; d, =0.001308, t=+/—In(p?)

for p>0.5;z=—-®'(p*) inwhich p*=(1—p).

From experimental test results, the normal probability paper can be
generated by the following steps:

Let the data plotted include N test results: X;, X, ...X;. Itis assumed

the values of X;,....X,, are arranged in an increasing order. Then, the

first test result is plotted at the intersection of X, on the horizontal scale

1 .
and probability p, =-——— on the vertical scale. The ith test result is
(n+1)
i
plotted at the intersection of X; and the probability, p; =———. ltis
(n+1)

convenient to replace P, by the standard normal variable Z; using

z, =®*(p,) as described in Equation (5).

Example: Consider a random variable, X , representing concrete
cylinder test results. Total number of test data (in terms of ksi) is 9.
They are 4.6, 4.9,5.0,5.1, 5.1, 5.2, 5.2, 5.3, 5.5. Use probability paper
to evaluate the data statistically.

Solution: Find the probability, p;, and standard normal variable, z; of

test data X;:
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Table 1.1.2.1

| Xi p, :L Z; :q)_l(pi)
n+1

1 4.6 0.1 -1.282

2 4.9 0.2 -0.842

3 5.0 0.3 -0.524

4 5.1 0.4 -0.253

5 5.1 0.5 0

6 5.2 0.6 0.253

7 5.2 0.7 0.524

8 5.3 0.8 0.842

9 5.5 0.9 1.282

From Table 1.1.2.1 the probability paper is generated and shown in

Figure 1.1.2.9.
z
2
s/
. e
4
e
0 e
/J-H Te=0.255
S
e
/ | =5 .1
2 f t f f
4.0 4.8 .41 ] 5E w0

Figure 1.1.2.9 Probability Paper

For comparison, equations (4) and (5) in Section 1.1.2.2 are used to
calculate the sample statistics £, and o . They are

1 n
Hx :Hizzl:xi

23(4.6+4.9+5.O+2*5.1+ 2*5.2+5.3+55)=5.1
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Oy =

(fo]—n(i)z 234.61-9* (5.1)°
= :\/ BL-9*(.1)° _ e
n-1 9-1

From Figure 1.1.2.9, it can be seen that the data appear to follow a
straight line. Therefore the test results follow a normal distribution. The

dash line in the figure is plotted based on the x, and o, calculated

above.
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1.1.3 Applications of Random Variables

3.1 Linear Functions of Random Variables
If a random variable, Y , is a linear function of random variables

Xy Xy X,
n
Y=a,+a X, +a,X, +..+a,X, =a,+).aX,
i-1
then the mean of Y is
n
Hy =8, 4‘2‘,3#&i (1)
i=1
and the variance of Y is
_ 2
o? =E(Y 44,
n n
:Z‘,Z‘,ai"jljpxixjgxio'xj (2)
i=1 j-1

If X,, X,,...X, are uncorrelated with each other, then Pxix, = 0 for

I # ] and equation (2) reduces to

n
GYZ = Zafaii (3)
i=1

Example 1.1.3.1: A simply supported prestressed I-Girder is loaded with
dead load (self weight + slab weight), DL, and a concentrated dead
load (steel diaphragm) at center of the beam, P . The allowable moment
capacity at the mid-span of the girder is M . Girder span length is 53

feet. All three random variables of DL, P, and M are uncorrelated
normal random variables with statistical parameters shown as follows:

Uy, =1.6k/ feet; V, =10%
up =0.3k/ feet; V, =15%
fy, =1200 k - feet; V,, =12%

what is the probability of failure of the girder?
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L L2=26.5 L/2=26.5 J
-l eont

Sol: Calculate the standard deviation of DL, P, and M,
Op = Mo Vo, =1.6%0.1=0.16(k/ feet)
op = tp -Vp =0.3*0.15 = 0.045(kips)
Oy, =My, Vy, =1200%0.12 =144(k — feet)
The demand moment at the center of the girder is

2

M = % N % — 351.12(DL) +13.25(P)

LetY =M;-M =M, —351.12(DL) —13.25(P) (@)
Equation (a) shows that Y is a linear function of random variables M,
DL,and P.

Therefore:
3

Hy = Z‘,ai,uxi

i=1

= gty —351.12u5 ~13.254,
=1200 - (351.12)(1.6) — (13.25)(0.3) = 634.23(k — feet)

3
ol =Y a%?
i=1
= (1)*(144)% +(351.12)%(0.16)* + (13.25)%(0.045)?
= 23892.5(k — feet)
o, =154.57(k — feet)
Thus, the probability of failure of girder is

P(Y <0)= @[O_M j = @(Mj = (- 4.1)

o, 154,57
From Table 1.1.4.1, = ®(-4.1)= 2.06 *10°,
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A

Probability
of failure =
shaded area
=2.06 x 10

&
Hy =634.23 k-feet

|
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3.2 Nonlinear Functions of Random Variables

If a random variable, Y , is a nonlinear function of random variables
X1y X,,...X,, the mean and variance of Y can be calculated

approximately by the following steps.

Step 1: Use Taylor series expansion of Y to linearize the nonlinear
function, Y , at a set of “design point values”
Nonlinear function Y = f (X, X,...X )

Linearized function Y = f(X:,X;,...X*)

+Z(X —X; )87

(1)

at (X, X5, X5)
Step 2: If the nonlinearity of Y is not severe, the design points
(X, X;,...X") may be approximately assumed to be the mean
values of the random variables, i.e. (,ux1 vy, ey )
Example 1.1.3.2.1: A 19"x12” beam with tension reinforcement area of

4 in? is subjected to a demand moment Q. The
moment capacity of the beam is

_ a)_ o STy
MR—ASfy(d—Ej—Asfy( . f,cb]

(Af,f
f'ch

= A f,d-059

The random variables are fy, f'c, and Q. Their statistical parameters
are as follows:

d=19"

Ag 4in? v
* & & o

p=12"
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My, =66 ksi; V, =0.105 .oy =u; -V, =6.93 ksi
Ui, =416 ksi; V., =0.14; o, =0.5824 ki
g =3000 k—in; V, =0.12; o, =360 k—in

Let Y =M, -Q

f 2
:Asfyd—0.59(Asl—y)—Q (1)
f'ch
Equation (1) represents the limit state function and it is a nonlinear
function. If Y < 0, failure will occur. Linearize equation (1) at the design

points (£4¢ s ey M)

40u, f
Yz4.0,ufyd—0.59( fy) Sy
/U'f'cb
of
+(f, — —
( y ﬂfy)&fy evaluated at mean value
of
+(f'c—p; ) —
( Hi C)ﬁf 'c| evaluated at mean value
of
+ —_— —_
@ ﬂQ)@Q evaluate at mean value
2f A2 2
of |=Ad-0.59 ,yAS :(4,0)(19)_0,59M
5 f'ch (4.16)(12)
¥ Imean values mean values —51.04 in®
f 2 * 2
ot |ose A 50 (40766
e (f'c)"(b) (4.16)°(12)
mean values  |mean values —198.01 in®
f 4
——Imean values =- =1
mean values
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(Auy)’
A, u,,d —0.59 #fL — g

f'c

6) —3000=1192.27 k —

=(4.0)(66)(19)— (0. 59)(( 0 )(z 1)
Y 119227 + (51, 04)(fy —66)

+(198.01) f'c —4.16)—(Q —3000)

~51.04 fy +198.01f'c-Q
Therefore;

3
Hy :ZaiﬂXi +0

i=1

=(5104)(66) (19801)(4.16)—(3000+0=1192.36 k—in
za o’ =(51.04)*(6.93)

(198.01) (0.5824)* +(360)* = 268007.72 (k —in)’

.o, =517.69 (k —in)
Thus, from Table 1.1.4.1 the probability of failure of beam is

P(Y <0)= 0— u, :q)(—1192.36j
oy 517.69

= ®(-2.303) =1.07*10°?
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1.1.4 Structural Reliability Analysis

4.1 Probability of Failure
The basic structural reliability problem considers only one load effect Q

resisted by the resistance R. Both Q and R are described by a known
probability density function, fQ( ) and fR( ) respectively. A structural
element will be considered to have failed if the resistance R is less than
the load resultant Q acting on it. The probability P; of failure of a
structural element can be stated in the following ways:

P, =P(R<Q) (1a)
=P(R-Q<0) (1b)
= P(ggl) (1c)

or in general form

= P[G(R,Q) <0] (1d)

Where G( ) is termed the limit state function and the probability of
failure is identical to the probability of limit state violation. G(R, Q) may
be linear or nonlinear. The probability density functions fR, fQ for R

and Q respectively are shown in Figure 1.1.4.1. In figure 1.1.4.2,

equation (1) is represented by the hatched failure domain D, so that the
failure probability becomes:

R-G, safety margin

R, resistance
PDF Q, load

effect

Probability
of failure

Figure 1.1.4.1 — PDF of load, resistance, and safety margin
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X fao

domain
Gt Failure \\\
doman £ 5 . Linear fmif state function
K R-Q=00orG=0

Nontinear fnif
siale funchon

Q

Figure 1.1.4.2 - Region D of integration for failure probability
determination

P, =P(R-Q<0)=[ [ foo(r,q)dr dg 2)
when R and Q are independent, fo,(r,q)= fo(r)f,(q) so that
equation (2) becomes:

P =PR-Q<0)=[ [T f,(fo(@drdg @

= [ Fa(n)fo(rydr (4)
where F,(r) is the cumulative probability of R <, or the probability

that the actual resistance R of the member is less than some limit state
value r. Current AASHTO LRFD design considers 4 different limit
states. They are 1) Service limit state, 2) Fatigue and Fracture limit
state, 3) Strength limit state and 4) Extreme event limit state.

From equations (2), (3), or (4), the probability of failure is calculated by
integration of the joint density function over the failure domain (i.e. G<0).
In general, it is very difficult to evaluate these integrals, especially when
G=0is nonlinear. Therefore, in practice, the probability of failure is
calculated indirectly using an other procedure called “Safety Index” to
guantify structural reliability. The safety index is described in the
following section.
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4.2 Safety (Reliability) Index

Figure 1.1.4.3 shows the top view of the Figure 1.1.4.2. The contours of
joint probability function fRQ may not be symmetric because the unit of
measurement (such as standard deviation) of each random variable may
be different (i.e.oy # O'Q). However if R and Q are transformed into

two standard non dimensional forms (i.e. standard normal distribution
with zero mean and unit variance) as

R—

; Rt
Or

ZQ =Q_/JQ
Oq

the Figure 1.1.4.3 transforms to Figure 1.1.4.4. Z. and ZQ are called
“reduced variables”.

Contours of fRQ

Safe region

G =0 (linear)

.~
/ G =0 (nonlinear)

-
o

Figure 1.1.4.3 Limit State Surface in the space of R and Q.
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Standard normal
Zp Distributions

Contours
Of f ZQ Zr

Safe region

{nonlinear)

Failure region

Direction cosine

Figure 1.1.4.4 Limit State Surface in the space of standardized

Z, and Z,

The joint probability function fZQZR is now a bivariate normal distribution
and symmetrical about the origin. From Figure 1.1.4.4, the probability of
failure, P, is equal to the integration of fZQZR over the failure region
along the V direction. However, by well-known properties of the
bivariate normal distribution, the integration of fZQZR along the V

direction leads to a marginal standard normal distribution (see Figure

1.1.4.4).
Figure 1.1.4.4. indicates that
Pf = (Pf ) marginal standard normal distribution = CD(_ ﬂ) (1)

Equation (1) shows that the P; of equation (3) in Section 1.1.4.1 can be

directly calculated by using standard normal distribution through
reliability index £ (see Figure 1.1.4.4). From Figure 1.1.4.4, it can be

seen that the reliability index, £, is the shortest distance from the origin
of Z and Z, coordinates. Thus

New: June 2001 LRFD_DGO001



LRFD Bridge Design Guidelines

Introduction — Section 1.1 Page: 4.2-3

Structural Reliability Analysis

p=Ete )

JoR+04

If R and Q are normally distributed random variables, then, the
probability of failure is

P :P(R—QSO):P(G<O):®(MJ

Og
:@—0_("“”@) = (- p) 3)
JoR+04
or ﬂ:qfl(Pf)za—G 4)

G

The relationships between S and P; are shown in Table 1.1.4.1

Table 1.1.4.1 Probability of Failure vs. £

Reliability Index 4 | Reliability S(: 1-P, ) Probability of failure
Pf = CD(_ /B)
0.0 0.500 0.500x10™°
0.5 0.691 0.309x10™
1.0 0.841 0.159x10™
15 0.9332 0.668x10™
2.0 0.9772 0.228x10™
2.2 0.9861 0.139x10™
2.3 0.98928 0.1072x10™
2.5 0.99379 0.621x10%
3.0 0.99865 0.135x10%
35 0.999767 0.233x10°
4.0 0.9999683 0.317x10™
4.1 0.99997938 0.2062x10™
4.2 0.99998668 0.1332x10™
45 0.99999660 0.340x10°
5.0 0.999999713 0.287x10°
55 0.9999999810 0.190x10~
6.0 0.999999999013 0.987x10°
6.5 0.9999999999598 0.402x10™*°
7.0 0.99999999999872 0.128x10™*
75 0.999999999999681 0.319x10™
8.0 0.99999999999999389 0.611x10™"

Equation (2) only shows the reliability index of two uncorrelated random
variables R and Q.

Consider a linear limit state function of the form
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n
G(Xy, Xpr Xy )= + @, X, +3,X, +..3,X, =8, + Y. a X, (5
i=1
Where a, (i =01,..., n) are constants and X, are uncorrelated random
variables. The reliability index £ can be expressed as

a, + Z a; Uy
p=———— (6)

n

Z(aiUXi )2

i=1

Equation (6) shows that the reliability index depends only on the means
and standard deviations of the random variables. There, £ is also
called a second-moment reliability index. Considering a nonlinear limit
state function. G(Xl, X, X, ), it can be linearized approximate by
the Taylor series expansion at a design point (Xl*, X ; ,...X:) along the

G =0 curve.

G(Xy, X, X, ) 2 G(X], X, X)) %

n

+Z(xi—x§);79

i=1

evaluated at (x;x;x;)

i
Once g(Xl, X, ,...Xn) is linearized by eq. (7), similar to eq.(5), the
reliability index £ can be estimated as

X, XX
/B = g( ; 2 n) where a =K eva_luated _at
> (@) e

i=1

This can be illustrated by using two random variables R and Q as
shown in Figure 1.1.4.5.
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: Linearized G(Zr,Z5)=0 using
Taylor services expansion at
point (27,25

/V -7
G(Zr,2Za) =0

Design point (25,25

Figure 1.1.4.5 Design Point on the Failure Boundary

The design point is a point on the limit state function G = 0 from which
the shortest distance, /£, to the origin of the reduced variable space

occurs. Since this design point is generally not known at this time, an
integration technique called “Hasofer-Lind reliability index” must be used
in order to find the location of the design point. The Hasofer-Lind
reliability index integration technique can be briefly described as follows:

For n random variables, solve (2n +1) simultaneous equations with

(2n +1) unknowns. The unknowns are

B.a,a,,..a,,1,1,,.2, where

_ 9

Z;

evaluated at design point

n ag
Zi

| oz,

evaluated at design point

og a9 GXi_ og

0z, ox, oz, ox, % ©

Zn:(ai ) =1 (10)

i=1

Z, = Pa, (12)

0(zi,2;...2;)=0 (12
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Equation (12) indicates that the design point (ZI, Z;,...Z;) is on the
failure boundary G =0.

Example 1.1.4.2.1: Find the reliability index of example 1.1.3.2.1 by
Hasofer-Lind method.

Solution:
Define the limit state function:

From example 1.1.3.2.1, the limit state function is:

G=M,-Q=0
(A1) (1,
=Afd-057—>—-Q=76f -0.7867-——-Q=0
2 f'ch ° ! f'c <
.G=76f f'c-07867(f J —Qf'c=0 (1)

The means and standard deviation of random variables are:
iy =66 ksi; o =6.93 ksi
U =416 ksi; o, =0.5824 ksi
tq =3000 k—in; o, =360 k—in

Define the reduced variables

f —
Z, =2 HY o f =y +Z,0, =66+6.93Z,
Oy
flc_;uf'c
Z,=— M o fo=pu, +Z,0,, =416+05824Z, ! (2)
O-f'c
2, =37 g o +2,0 = 3000+ 360Z,
(o}
Q

Substitute eq. (2) into eq. (1):

76[66 +6.93Z, [4.16 + 0.5824Z, |- 0.7867[66 + 6.93Z, | —
[3000+360Z,]4.16 + 0.5824Z,]=0

= 1471.36Z, +1174.12Z, —1497.6Z, —37.78Z? +306.74Z,Z,
—209.664Z,7,, +4959.7 = 0

3) Formulate gintermsof B and «;:

Zl* = P
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g =1471.36 fo; +1174.12 B, —1497.6 S, —37.78,820512

+306.74 8%yt — 209.664 f2ctat, +4959.7 = 0
- [1471.36c, +1174.12c, —1497.60, |8
—[37.78a2 —306.740,01, + 209.664c1,a, |32 + 4959.7 = 0

[37.7807 —306.74c1,x, + 209.6640r,z, |3* — 4959.7
1471360, +1174.12¢, — 1497 .6a,

B = 3)

4) Calculate «; values:

YT [1471.36 — 75.56 Sz, +306.74 B, | "
=
[1471.36 — 75.56 ez, +306.74 8z, | +
+[1174.12 + 306.74 Bar, — 209.664 S, |

+[-1497.6 - 209.664 fat, |

—[1174.12 + 306.74 e, — 209.664 Sz, |
[1471.36 — 75.56 Sz, +306.74 8z, |* +
+[1174.12 + 306.74 Bar, — 209.664 S, |
+[-1497.6 — 209.664 S, |

—[-1497.6 - 209.664 c, |
[1471.36 — 75.56 S, + 306.74 8, |* +
+[1174.12 + 306.74 e, — 209.664 S, |
+[-1497.6 — 209.664 Sz, |

5) Start iteration with a guess for #,a,,a,, and a, :

Let o, =, =—+/0.333 =-0.58; o, =+/0.333 =0.58
andlet f =3

The iterations are summarized in Table 1.1.4.2. The reliability index /3
changes very little between iterations 4 and 5, so the solution has
converged. The final £ = 2.285. By comparing with the approximated
reliability index £ = 2.303 in example 1.1.3.2.1, the approximated £ of
2.303 is close to the actual £ of 2.285.
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Table 1.1.4.2 Integrations for Example 1.5.2.1

Iteration p a, a, a,
1 2.667 -0.6759 -0.1742 0.7161
2 2.324 -0.7187 -0.1083 0.6869
3 2.290 -0.7162 -0.1540 0.6806
4 2.285 -0.7124 -0.1650 0.6821
5 2.285 -0.7115 -0.1674 0.6825

The Hasofer-Lind reliability index iteration technique described here is
mainly for the normal random variables with nonlinear limit state function.
If some of the random variables are not normal random variables, a
procedure call “Rackwitz-Fiessler” procedure can be used to calculate
the “equivalent normal” values of the mean and standard deviation for
each non normal random variable. Once the equivalent normal
parameters have been calculated, the basic steps in the iteration
procedure are the same as those in the Hasofer-Lind iteration technique.
The details of Rackwitz-Fiessler procedure are not described in here.
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1.1.5 Monte Carlo Simulation

In Section 1.1.4, the probability of safety (reliability) of a structural
member is evaluated by the reliability index. It is very difficult to perform
reliability analysis of a member with consideration of complicated
nonlinear (inelastic) behavior by using reliability index technique. The
probabilistic problems involving complicated nonlinear behavior of a
member can be solved by Monte Carlo Simulation.

The Monte Carlo Simulation is a technique to artificially simulate a large

number of data without doing any physical testing, and then observe the
number of times some event of interest occurs. To generate the artificial
sample data, certain probability distribution of the important parameters

need to be known first.

5.1 Generation of Normal Random Numbers

Since the normal probability distribution plays an important role in the
structural reliability analysis, it is important to generate normal random
numbers by Monte Carlo Simulation. The steps of simulating normal
random numbers are shown as follows.

Step 1 — Generation of Uniform Distributed Random Number:

Most mathematical computer programs have random number generators
for generating uniform distributed random number as described in
Section 1.1.2.3.

Table 1.1.5.1 gives a short list of random numbers with values between 0
and 1.

Table 1.1.5.1 — Generated Uniform Distributed Random Numbers

0.050203 | 0.269082 | 0.442000
0.619129 | 0.472640 | 0.833705
0.872402 | 0.422864 | 0.412275
0.376568 | 0.467299 | 0.145451
0.139927 | 0.415784 | 0.849178
0.318491 | 0.523667 | 0.598193
0.987671 | 0.243629 | 0.561388
0.033265 | 0.741569 | 0.169408
0.234626 | 0.408673 | 0.967040
0.623157 | 0.021790 | 0.864834
0.957884 | 0.547472 | 0.332286
0.518906 | 0.749779 | 0.849239
0.442305 | 0.681600 | 0.834803
0.445845 | 0.140538 | 0.885769
0.834284 | 0.888607 | 0.359783
0.811213 | 0.105136 | 0.607227
0.935728 | 0.067202 | 0.705435
0.450423 | 0.864772 | 0.841975
0.579058 | 0.363628 | 0.784091
0.662648 | 0.863948 | 0.491226
0.039918 | 0.858242 | 0.557054
0.414075 | 0.432234 | 0.934263
0.103214 | 0.412091 | 0.087985
0.112308 | 0.749199 | 0.242988
0.821833 | 0.260933 | 0.012574
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Step 2 — Generation of Standard Normal Random Numbers:

To generate a set of standard normal random numbers 2,,2,,...Z, a
corresponding set of uniform distributed random numbers U, U,,...U,
between 0 and 1 need to be generated first. For each U;, the

corresponding Z; is
z, =d(u,) (1)

where @7 is the inverse of the standard normal cumulative distribution
function. Equation (1) can be graphically explained by Figure 1.1.5.1.

u= ‘b(z)

05

Uniform Distributed
Random Numbers

W7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
|
I
I
I
|
I
I
I
I
I
I
I
|
Zi

Figure 1.1.5.1 Generation of Standard Normal Random Numbers

Step 3 — Generation of Normal Random Numbers:

Let a normally distributed random variable X with mean z, and
standard deviation o, then from section 1.1.2.2,

X=u, +2oy (2)
or

X; = Uy +Z,0 (3)
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Therefore a random value X; can be obtained by using a generated

standard random number Z; described in step 2.

Example 1.1.5.1: Using Monte Carlo Simulation technique, find the
probability of failure of a girder shown in example 1.1.3.1.1. The girder is

subjected to a concentrated dead load, P, and a dead load, DL. The

moment capacity of the girder is M . The statistical parameter of DL,
P, and M are

to, =1.6(k/ feet), o =0.16(k/ feet)

1y =0.3(kips);, o, =0.045(kips)

fy, =1200(k — feet) o, =144(k — feet)
Solution: From example 1.1.3.1.1 the demand moment at center of the
girder is

2

M = % ; % —351.12(DL)+13.25(P)
the limit state function is

Y=M,-M =M, -351.12(DL)-13.25(P) (1)
For simplicity, use only 5 values of the M, 5 values of DL and 5

values of the P using Monte Carlo Simulation. From table 1.1.5.1, the
first 5 uniform random numbers will be used to calculate five values of

M, the second 5 uniform random numbers will be used to calculate
values of DL, and the third 5 uniform random numbers will be used to
calculate five values of P . The simulated values of M, DL, and P
are summarized in Table 1.1.5.2.

Table 1.1.5.2 Simulation for M, DL, and P

u, Z, My =1200+144z,
0.0502 -1.6429 963.42
0.6191 0.3032 1243.66
0.8724 1.1378 1363.84
0.3765 -0.3145 1154.71
0.1300 -1.0806 1044.39

u; Z; DL; =1.6+0.167,

0.31849 -0.4719 1.5245
0.9877 2.2467 1.9595
0.03326 -1.8348 1.3064
0.2346 -0.7237 1.4842
0.6231 0.3138 1.6502

u; Z; P, =0.3+0.045z,
0.9579 1.727 0.3777
0.5189 0.05 0.3023
0.4423 -0.145 0.2935
0.4458 -0.135 0.2939
0.8343 0.97 0.03436
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From Table 1.1.5.2, 5 generated values of Y are
Y =M, —351.12(DL)-13.25(P)

423.133
551.635
=4901.25
629.68
464.51

The sample mean and sample standard deviation can be obtained using
equations (4) and (5) in Section 1.1.2.2.

5
sy = %Z y, = %(2970.198) =594.04 (k — feet)
i=1

~189.3 (k — feet)

Oy =

5
_2 _ 5 2
(; i j ('uY) _ \/1907860.71—1764417.61

5-1 4
Thus, the probability of failure of the girder is

0—

P(Y <0)= @[ﬂj = ®(-3.14)=8.45x10""
Oy

Comparing with the theoretical 4, =634.23 k — feet and

o, =154.57 (k — feet) in example 1.1.3.1.1, it can be seen that s,

and o, by Monte Carlo Simulation are not close to the theoretical s,

and o, respectively. Itis because only 5 sample values are used in the

example. The accuracy of the Monte Carlo Simulation increases as the
number of sample values increases.
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1.1.6 Statistical Load Models

Loads considered in bridge design are dead load, live load (static and
dynamic), environmental loads (temperature, wind, earthquake) and
other loads (collision, braking, etc.). The statistical load models are
developed using the available statistical data and surveys. Loads are
treated as random variables. Their variation is described by the
cumulative distributions function (CDF), mean value and coefficient of
variation. The relationship among various load parameters is described
in terms of the coefficients of correlations.

It is assumed that the economic life span for a newly designed bridge is
75 years. Therefore extreme values of live load and environmental loads
are extrapolated accordingly from the available data base described as
follows:

6.1Dead Load

Dead load, D, is the gravity load due to self weight of structural and
nonstructural elements. Dead loads can be categorized as follow:

D, = weight of factory made elements (steel, precast concrete
members),

D, = weight of cast-in-place concrete members,

D, = weight of the wearing surface (asphalt),

D, = miscellaneous weight (e.g. railing, luminaries).

D, ~ D, are modeled as normal random variables. The statistical

parameters developed are listed in Table 1.1.6.1. In the table, bias
factor is defined as the ratio of mean value to the nominal value. As
mentioned previously, the CDF of each random variable

(D,,D,,D; or D,) is generated by statistical data and/or surveys.
The CDF can be expressed in terms of standard normal probability
paper. Figure 1.1.6.1 shows the probability paper of D,. It shows that
the mean value (u)is about 1 and the mean plus a standard deviation
(1 + o) is 1.25, which leads to the coefficient of variation

y.9_025

U

=0.25 as shown in Table 1.1.6.1

Table 1.1.6.1 Statistical Parameters of Dead Load

Component Bias Factor Coefficient of Variation
Factory-made members 1.03 0.08
Cast-in-Place members 1.05 0.10
Asphalt 3.5 inch* 0.25
Miscellaneous 1.03-1.05 0.08-0.10

*mean thickness
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w

z, Inverse Standard
Normal Distrdbution
Function

Reglons: S-Guﬂlwett

[ ]

E

phalt Thickness { 3.5 inch

p=1

--E-“-H"-F-F e w— om—

p+p=1.25 2

Figure 1.1.6.1 Cumulative Distribution Functions of Asphalt

Thickness
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6.2 Live Load

The statistical live load model is mainly based on the available truck
survey data. About 10,000 selected trucks being heavily loaded were
measured. Even though 10,000 trucks are considered, it is a very small
amount compared to the actual number of heavy vehicles in a 75 year
bridge life time. Therefore, the maximum load effects corresponding to a
75 year life are calculated by extrapolation of available truck survey data.
For each truck in the survey, bending moments, M , and shear forces,
V , are calculated for a wide range of spans. Simple spans and two
equal continuous spans are considered. The moments and shears are
calculated in terms of the standard HS20 truck or lane loading,
whichever governs. Typical continuous spans are plotted on normal
probability paper in Figure 1.1.6.2. The maximum moments for various
time periods are extrapolated from figure 1.1.6.2 and shown in Figure
1.1.6.3. Similar probability paper for the maximum shears for various
time periods can also be generated.

Let N be the total number of trucks in time period, T . Assume the
surveyed trucks represent about two weeks of traffic. Therefore, if

T = 75 years, the number of trucks, N , will be about 2,000 times larger
than in the survey. This will resultin N = 20 million trucks. The
probability level correspondingto N is 1/ N , and for N = 20 million,

the probability is 1/ 20,000,000 =5x107® , which corresponds to
Z =5.33 on the vertical scale, as shown in Figure 1.1.6.3.

The mean maximum moments corresponding to various periods of time
can be read from the graph. For example, for a 120’ spanand T =75
years, the mean maximum moment is 1.2*(HS20 moment). The number
of trucks passing through the bridge in 5 years is about 1,500,000. This
corresponds to Z = 4.83 on the vertical scale, and the resulting moment
is 1.15* (HS20 moment). Similar calculations can be performed for other
periods of time. The difference between the mean maximum 50 year
moment and the mean maximum 75 year moment is about 1%.

To predict the mean and standard deviation for truck moments (or
shears) in the time period of 75 years, first find the average probability of

truck moments (or shears), P, , which exceed the nominal moment (or
shear) capacities of the bridges in the period of 2 weeks of surveying
time (For example, P; = 107*%%). Then the predicted probability of truck
moments (or shears) which exceed the nominal moment (or shear)
capacities is assumed to be:

_ 75 yearsx12 months/year x 4 weeks/months

N 2 weeks

x107*% =1800x107** = 0.025

Py
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The PDF of 75 years can then be estimated by shifting the original PDF
based on two weeks to the right (see Figure 1.1.6.3B) to meet
P; =0.025 and assuming the mean value of the PDF in 75 years is

equal to the mean maximum moment (or shear) in 75 years from the
probability paper in Figure 1.1.6.3. Thus the coefficient of variation for
the maximum truck moments (or shears) in 75 years can be obtained by
converting the PDF of 75 years to the corresponding probability paper.

E 3
5 lpan [rt):

Inverse Standard Normal Distribution Function
::_:
Q T
N ‘%
-
AN

0 1 2

Truck Moment / HS20 Moment

Figure 1.1.6.2 Negative Moments from Truck Survey for Two Equal
Continuous Spans.
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Figure 1.1.6.3 Extrapolated Negative Moments for Two Equal
Continuous Spans.
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Figure 1.1.6.3B PDF of the maximum truck moments in 75 years.
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6.3 LRFD HL-93 Design Live Load

The objective in the selection of the live load model for the LRFD bridge
design code is a uniform ratio of the nominal (design) moments (or
shears) and the mean maximum 75 year moments (or shears) as
described in Section 1.1.6.2. Various live load models were considered.
For the considered models, the ratios of moments and shears were
calculated for a wide range of spans. Good results were obtained for a
model (called HL-93 design live load) which combines the HS20 truck
with a uniformly distributed load of 640 Ib/ft. For shorter spans, a tandem
of two equal axles, each 25 kips, spaced at 4 ft, also combined with a
uniform load of 640 Ib/ft, is specified. For negative moment in
continuous spans, the HL-93 design live load (per lane) is the larger of:

(&) One HS20 truck plus a uniformly distributed loading of 640 Ib/ft,

(b) 90% of the effect of two HS20 truck, placed in two different spans,
with headway distance of at least 50 ft, plus 90% of the uniformly
distributed loading of 640 Ib/ft. The headway distance, 50 ft,
corresponds to the minimum value for moving vehicles.

The HL-93 design live load is shown in Figure 1.1.6.4. The mean-to-
nominal ratio (bias factor) of live load is equal to the ratio of the mean
maximum 75 year load effect (described in Section 1.1.6.2) and the
design value. The calculated bias factors for HS20 loading and the HL-
93 loading are shown in Figure 1.1.6.5 for negative moment in
Continuous Spans. It can be seen that the bias factor varies as a
function of span, however, the variation is reduced for the HL-93 live
load.
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Figure 1.1.6.4 HL-93 Design Live Load in LRFD Code
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]
HS520
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Figure 1.1.6.5 Bias Factors for Negative Moment; Ratio of
Mn(75)/Mn(HL-93) and Mn(75)/Mn(HS20).
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6.4 Load Combinations

For each load component, Q,, if a factored load value, y,Q,, , is defined,
for example, as not being exceeded 2.5% of the load component in 75
years, the factored load 7,Q,; can be shown in the following probability
density function Q, (Figure 1.1.6.6). Now the statistical parameters for
individual probability density function, Q;, such as dead load or live load

can be obtained as described in Section 1.1.6.1 and 1.1.6.2,
respectively.

¥ Qu=Ho(1+k1y)

0.025
Ll

Ho  Qu

Figure 1.1.6.6 Probability density function, fQi , of load, Q,; mean

load, 4, nominal (design) load, Q,;, and factored load, 7;Q,, .

ni?

In the figure, the shaded area is equal to the probability of exceeding the
factored load value.

From Figure 1.1.6.6,

0.025 = q)(yiQni _IUQJ
Oq

7:Qui —Hqg
Oq

=2 =Kk (from Table 1.1.4.1)

7:Qui — Hqg :kO'Q
7:Qui = Hq +kUQ
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o
= fo| 1+ k—=
Hq

= 1o 1+ kv, )

Therefore the load factor y; = ﬂ—Q(1+ kVQ)

ni

=4 (1+ kVQ) when A, = bias factor (mean load to nominal load ratio).

Note that the statistical parameters for individual probability density
function, fQi , such as dead load or live load can be calculated through
the processes described in Section 1.1.6.1 and 1.1.6.2, respectively.
These parameters of load components are summarized in Table 1.1.6.2.

Various sets of load factors, corresponding to different values of k, are
presented in Table 1.1.6.3. The relationship is also shown in Figure
1.1.6.7.

Recommended values of load factors correspond to k = 2. For simplicity
of the designer, one factor is specified for D, and D,, y =1.25. For
D,, weight of asphalt,  =1.50. For live load and impact, the value of
load factor corresponding to k = 2 is ¥ =1.60. Although a more

conservative value of ¥ =1.70is proposed for the LRFD code, y =1.75

is chosen in the current LRFD code. In a similar matter, other load
factors can be derived (such as wind load on structure).

Table 1.1.6.2 Parameters of Bridge Load Components.

Load Component Bias Factor | Coefficient of Variation
Dead load, D, 1.03 0.08
Dead load, D, 1.05 0.10
Dead load, D3 1.00 0.25
Live load (with impact) 1.10-1.20 0.18

Table 1.1.6.3 Considered Sets of Load Factors.

Load Component k=15 k=2.0 k=25
Dead load, D, 1.15 1.20 1.24
Dead load, D, 1.20 1.25 1.30
Dead load, D3 1.375 1.50 1.65
Live load (with impact) 1.40-1.50 | 1.50-1.60 | 1.60-1.70
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Figure 1.1.6.7 Load Factors vs. K.

The total load in a bridge is a joint effect of dead load D, live load plus
impact L + |, environmental loads E (wind, snow, ice, earthquake,

earth pressure, water pressure), and other loads A (collision forces,
braking forces, etc.).

Q=D+(L+D)+E+A (1)

The distribution of the joint effects is based on the so called Turkstra’'s
rule. Turkstra observed that a combination of several load components
reaches its extreme when one of the components takes an extreme
value and all other components are at their average (arbitrary-point-in-
time) level. For example, the combination of live load with earthquake

produces a maximum effect for the lifetime T , when either,

1. Earthquake takes its maximum expected value for T and
live load takes its maximum expected value corresponding to
the duration of earthquake (about 30 seconds), or

2. Live load takes its maximum expected value for T and
earthquake takes its maximum expected value
corresponding to duration of this maximum live load (time of
truck passage on the bridge).

In practice, the expected value of an earthquake in any short time
interval is almost zero. The expected value of truck load for a short time
interval depends on the class of the road. For a very busy highway it is
likely that there is some traffic at any point in time. Therefore, the
maximum earthquake may occur simultaneously with an average truck
passing through the bridge.

In the general case, Turkstra’s rule can be expressed as follows,
Q(max)=max Q, fori=1,2,3and4 )

Where:
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Q, = D(max) + (L + I)(ave) + E(ave) + A(ave)

Q, = D(ave) + (L + I)(max) + E(ave) + A(ave)
Q, = D(ave) + (L + I)(ave) + E(max) + A(ave)
Q, = D(ave) + (L + I)(ave) + E(ave) + A(max)

In all cases, the average load value is calculated for the period of time
corresponding to the duration of the maximum load. The formula can be

extended to include various components of D, E, and A. Since dead
load does not vary with time, the maximum and average values are the
same.

The probability of an earthquake EQ or heavy wind W , occurring in a
short period of time is very small. Therefore, simultaneous occurrence of
EQ and W is not considered. As a result, the number of load
combinations considered in the code can be reduced as follows,

(L+1)max
Q. =D+max| " (3)
h (L + I)4hour +Wdai|y
EQmax
where (L+1),.., =maximum 75year (L+1); (L+ 1), =
maximum 4 hour (L +1); W, =maximum 75 year wind; W =

maximum daily wind; EQ__ =maximum 75 year earthquake.

max

For example, the mean maximum 4 hour live load moment for span
length of 200", (L + 1) 0. » Can be read directly from figure 1.1.6.2 for

Z = 2.58 (maximum of 200 trucks, so the probability level is

1 =0.005, which corresponds to z = 2.58 (see Table 1.1.4.1)).

200

Form figure 1.1.6.2, the maximum 4 hour live load moment is about
(0.7)(HS20 moment). From Figure 1.1.6.3, the maximum 75 year live
load moment is about (0.9)(HS20 moment).

Therefore, if the load factors for the first load combination are:

1.25D +1.70(L+1) 4)
and for the second one they are,

1.25D +1.40W (5)
then for the third combination, the load factors are,

1.25D +1.35(L + I) +0.45W (6)
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where live load factor = (%}(1.70) =(0.778)(1.70) =1.32 ~1.35

(mean maximum 4 hour truck is about 0.77 of the mean maximum 75
year truck); wind load factor = (0.33)(1.4) = 0.46 (mean maximum

daily wind is 0.33 of the mean maximum 75 year wind). Based on eq.

(6), AASHTO LRFD Codes adopts the load combination for STRENGTH-
V limit state as

1.25D +1.35(L + 1) + 0.40W 7)
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1.1.7 Statistical Resistance Models

Although the capacity (resistance) of a member is treated deterministic in
the Load Factor Design (LFD), in reality there is some uncertainty
associated with the material strength, member cross-sectional
dimensions. Therefore, the resistance, R, is also a random variable.
The cause of uncertainty can be put into three categories:

Material — strength of material, elastic modulus, cracking stress, etc.
Fabrication — geometry, dimensions, etc.

Analysis — approximate analytical method, idealized stress and strain
distribution models.

Usually, the variability of the resistance of components has been
quantified by tests, observations of existing bridges and by engineering
judgment. Most of this information is available for the basic structural
material and components such as statistical data for concrete or steel
stress-strain curves, concrete or steel elastic modulus, or steel I-section
hot-rolled members. However, structural members are often made of
several materials such as R/C or P/S girders. Since the test data on the
resistance of such composite members is not always available, it is often
necessary to develop statistical resistance models using available
material test data and numerical Simulation (such as Monte Carlo

Simulation). The resistance model R is to consider the resistance as a
product of the nominal resistance, R, , used in design and three

parameters that account for the uncertainty of material strength factor

M , fabrication (dimensions) factor F , and analysis (professional) factor
P.

R =R,MFP (1)
Therefore the statistical parameters of a resistance model are

Mg = Rty te ptp @)
and

Ve = (V2 +v2 +v2)? @)

where u,,, e, and u, are the mean values of M, F, and P
respectively. V,,,V, and V, are the coefficients of variation of M, F,

and P, respectively. u,,, t¢, 4p,Vy Ve, and V, were developed for

steel girders with composite and non-composite, reinforced concrete T-
beams, and prestressed concrete AASHTO-type girders and are
available in the literature.

A typical statistical moment capacity model of composite AASHTO type 3
P/S I-Girder is shown in Figure 1.1.7.1. The typical stress-strain curves
for concrete, prestressing strand were used. In the analysis, the curves
were generated by Monte Carlo Simulations. The long-term strength
changes of the concrete and steel are ignored in the analysis.
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Figure 1.1.7.1 Moment — Curvature Curves for Type Ill AASHTO
Composite Girder

The statistical parameters of resistance for steel girders, reinforced
concrete T-beams and prestressed concrete girders are shown in Table
1.1.7.1.
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Table 1.1.7.1 Statistical Parameters Resistance

Statistical Resistance Models

Type of Structure FM P R
Y A Y A |V
Non-Composite Steel Girders

Moment (compact) 1.095 0.075 1.02 0.06 1.12 0.10

Moment (non-com.) 1.085 0.075 1.03 0.06 1.12 0.10

Shear 1.12 0.08 1.02 0.07 1.14 0.105

Composite Steel Girders

Moment 1.07 0.08 1.05 0.06 1.12 0.10

Shear 1.12 0.08 1.02 0.07 1.14 0.105
Reinforced Concrete

Moment 1.12 0.12 1.02 0.06 1.14 0.13

Shear W/Steel 1.13 0.12 1.075 0.10 1.20 0.155

Shear No Steel 1.165 0.135 1.2 0.10 1.40 0.17
Prestressed Concrete

Moment 1.04 0.045 1.01 0.06 1.05 0.075

Shear W/Steel 1.07 0.10 1.075 0.10 1.15 0.14
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1.1.8 Reliability Index For Current AASHTO Standard Specification

In order to develop the LRFD codes, a target reliability index needs to be
determined. To determine the target reliability index, a set of bridges
were selected. The selected set includes about 200 representative
existing bridges in different geographical locations in the U.S. For the
selected bridges, moments and shears of girders are calculated due to
dead loads and live loads. The basic design requirement according to
AASHTO Standard Specification is

1.3D+217(L+1)=¢ R, (1)

where D, L, and | are moments (or shears) due to nominal dead
load, live load and impact using current AASHTO. R, is the required

resistance and ¢ is the resistance factors based on the AASHTO
Standard Specifications. The required resistance, R, is calculated as
_1.3D+2.17(L+1)
.=
¢

Once R, is calculated, the mean and standard deviation (i.e., £, and

R

(2)

GQ) are calculated for the total load effect based on the statistical

parameters of individual load effects as shown in Table 1.1.6.2. The
mean and standard deviation of resistance (i.e., (g and o) can be

obtained from R, and Table 1.1.7.1. By knowing statistical parameters

of load and resistance effects of Q and R, the reliability index, £, can

be calculated according to Section 1.1.4.2. After calculating the reliability
index for all the bridges in the selected bridge set. The target reliability
index was selected by AASHTO to be 3.5 for moments and shears.

The reliability indices of moment and shear based on AASHTO Standard
Specifications for steel girders are shown in Figures 1.1.8.1 and 1.1.8.2,
respectively. Similarly, the reliability indices of moment and shear for
prestressed I-Girders are shown in Figures 1.1.8.3 and 1.1.8.4, it can be
seen that the reliability indices vary significantly when the girder spacing
or the span length is changed. It indicates that a uniform safety level for
various spans and girder spacing is not achieved if bridges are designed
by the AASHTO Standard Specifications.
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1.1.9 Calibration of Load and Resistance Factors
The LRFD Code objective was to minimize the discrepancy between the
reliability index of designed bridges and the target index B, =3.5. The
reliability indexes below the target value of 3.5 are generally not
acceptable. The bridges chosen for the calibration include steel girder
bridges (composite and non composite), reinforced concrete bridges (T

beams) and prestressed concrete bridges (AASHTO girders). The span
range is from 30 ft to 200 ft and girder spacing range is from 4 ft to 12 ft.

The recommended load factors of dead loads and live load described in
Section 1.1.6.4 are used for the calibration. In the selection of the
resistance factors, the acceptance criteria is closeness to the target

value of the reliability index, B; =3.5. Various set of resistance
factors, ¢, are considered. Resistance factors used in the code are
rounded off to the nearest 0.05. For each value of ¢, the minimum
required resistance, R gy , is determined from the following equation,

Riweo = [1.25(D, + D, )+1.5D, +1.70(L + 1)]/¢ (1)

For a given resistance factor, material, span and girder spacing, a value
of R gep is calculated using equation (1). Then, for each value of

R rep and corresponding loads, the reliability index is computed based

on Section 1.1.4. The calculations shown that the reliability indices for
bridges designed by the LRFD code do not depend on girder spacing
(i.e. the change of reliability index due to change of girder spacing is very
minimum). The reliability indices of moment and shear based on LRFD
Code for steel girders are shown in Figures 1.1.9.1 and 1.1.9.2
respectively. The reliability indices of moment and shear for prestressed
I-Girder are shown in Figures 1.1.9.3 and 1.1.9.4, respectively. From the
calibration, the recommended resistance factors for the LRFD code are
shown in Table 1.1.9.1.

Table 1.1.9.1 Recommended Resistance Factors.

Material Limit State Resistance Factor, ¢
Non-Composite Steel Moment 1.00
Shear 1.00
Composite Steel Moment 1.00
Shear 1.00
Reinforced Concrete Moment 0.90
Shear 0.90
Prestressed Concrete Moment 1.00
Shear 0.90
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Figure 1.1.9.1 Reliability Indices for LRFD Code, Simple Span
Moments in Composite Steel Girders.

5
9 .——.-—__v - S ——
.a. 4 o= Wﬂﬂf""“" e
[« Bl i Al PR R A - bttt -
| [ o )
p 3
= !
3 2 — 095, 1=1.70
s == =095, v=1.60
a 1 === ¢=1.00,y=1.70
"ot =1.00, ¥=1.60
0 | [ |
° 100 Span (ft) 200

Figure 1.1.9.2 Reliability Indices for LRFD Code, Simple Span
Shears in Steel Girders.
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Figure 1.1.9.3 Reliability Indices for LRFD Code, Simple Span
Moments in Prestressed Concrete Girders.
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Figure 1.1.9.4 Reliability Indices for LRFD Code, Simple Span
Shears in Prestressed Concrete Girders.

From Figures 1.1.9.1 through 1.1.9.4, it can be seen that the LRFD Code
results in a considerably reduced scatter of £ values by comparing with
Figures 1.1.8.1 through 1.1.8.4, and more uniform reliability is achieved.
For easier comparison with the current AASHTO Standard
Specifications, a resistance ratio, I', is defined as

r= RLRFD/RHSZO (2)

Equation (2) is a measure of the actual changes of the code
requirements. Value of r >1 corresponds to LRFD Code being more
conservative than the current AASHTO Standard Specifications, and

r <1 corresponds to LRFD being less conservative than the current
AASHTO Standard Specification. Figures 1.1.9.5 and 1.1.9.6 shows the

New: June 2001

LRFD_DGO001



LRFD Bridge Design Guidelines
Introduction — Section 1.1 Page: 9.1-4

Calibration of Load and Resistance Factors
moment and shear resistance ratios for steel girders, respectively.
Similarly, the moment and shear resistance ratios for P/S I-Girders are
shown in Figures 1.1.9.7 and 1.1.9.8, respectively. In general, LRFD is
less conservative for the resistance moment when girder spacing
increases. It is more conservative for the resistance shear regardless of
the girder spacing when span length is greater than 60’ for steel girder
bridges. Itis also more conservative for the resistance shear regardless
of the girder spacing and span length for prestressed I-girder bridges.
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Figure 1.1.9.5 Resistance Ratios, I' = R pep /Ryss0, fOr Simple Span

Moment, Composite Steel Girder Bridges for Girder Spacing s =4,
6, 8, 10, and 12 ft.
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Figure 1.1.9.6 Resistance Ratios, I' = R zep /Ryss » for Simple Span

Shear, Steel Girder Bridges, for Girder Spacing s =4, 6, 8, 10, and
12 ft.
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Figure 1.1.9.7 Resistance Ratios, I' = R zep /Ryss» for Simple Span

Moment, Prestressed Concrete Girder Bridges, for Girder Spacing s
=4,6, 8, 10, and 12 ft.
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Figure 1.1.9.8 Resistance Ratios, I' = R zep /Ryss » fOr Simple Span

Shears, Prestressed Concrete Girder Bridges, for Girder Spacing s
=4, 6,8, 10, and 12 ft.
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